ГОСТ 8682-93 (ИСО 383-76)

Группа П66

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Посуда лабораторная стеклянная

ШЛИФЫ КОНИЧЕСКИЕ ВЗАИМОЗАМЕНЯЕМЫЕ

Laboratory glassware. Interchangeable conical ground V-joints

MKC 71.040.20 ΟΚΠ 43 2500

Дата введения 1995-01-01

Предисловие

1 РАЗРАБОТАН Госстандартом России ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 21 октября 1993 г.

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Республика Беларусь	Белстандарт
Республика Кыргызстан	Кыргызстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикстандарт
Туркменистан	Туркменглавгосинспекция
Украина	Госстандарт Украины

3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 2 июня 1994 г. N 160 межгосударственный стандарт ГОСТ 8682-93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1995 г.

4 B3AMEH <u>FOCT 8682-70</u>

5 ПЕРЕИЗДАНИЕ

0 Введение

Настоящий стандарт распространяется на конические стеклянные шлифы и обеспечивает взаимозаменяемость между ними независимо от места их изготовления.

Для достижения взаимозаменяемости необходимо, чтобы каждое из следующих требований было выполнено, включая соответствующие допуски:

а) конусность;

- b) наибольший диаметр шлифа;
- с) длина пришлифованного участка;
- d) чистота обработки поверхности.

Номинальные размеры, указанные ниже, выбраны из рядов соединений, широко использующихся во многих странах; ряд наибольших диаметров шлифов представляет собой наиболее приемлемое приближение к \mathbb{R} 40/3 рядам номеров (5, 7. . . , 100), установленных <u>ГОСТ 8032</u>.

С практической точки зрения, в связи с трудностью измерения отшлифованных участков обработанных соединений, желательно применять систему калибров для проверки основных размеров.

Определение этих размеров в соответствии с разделом 6 является калибров. существенной частью настоящего стандарта, НО система приведенная Α, признанная вполне В приложении на практике удовлетворительной, не является единственной для применения в этом случае.

Испытание на герметичность, приведенное в приложении В, обычно применяют при испытании шлифов, его включение в настоящий стандарт не исключает применения других испытаний, которые могут быть более приемлемыми для особых целей.

Особое внимание уделяют методу пневматической калибровки.

1 Назначение и область применения

Настоящий стандарт определяет основные геометрические требования к взаимозаменяемости в отношении четырех рядов конических стеклянных шлифов лабораторного применения.

Требования настоящего стандарта являются обязательными.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты: ГОСТ 2789-73 Шероховатость поверхности. Параметры, характеристики и

обозначения

ГОСТ 8032-84 Предпочтительные числа и ряды предпочтительных чисел

3 Конусность

Конус шлифов должен быть таким, чтобы приращение диаметра соответствовало десяти приращениям осевой длины с допуском ±0,006 на приращение диаметра, т.е. конус (1,00±0,006)/10.

Примечание - Современное производство в основном использует более жесткие допуски, чем указанные выше, но из-за отсутствия экспериментальных данных невозможно уменьшить установленную величину.

4 Наибольший диаметр шлифа

Наибольший диаметр шлифа выбирают из ряда: 5,0; 7,5; 10,0; 12,5; 14,5; 18,8; 21,5; 24,0; 29,2; 34,5; 40,0; 45,0; 50,0; 60,0; 71,0; 85,0; 100,0 мм.

5 Длина пришлифованного участка

Длину пришлифованного участка (l) в миллиметрах рассчитывают по формуле

$$l = K \sqrt{d} ,$$

где K - константа (постоянная величина);

d - наибольший диаметр шлифа, мм.

Вычисленную длину округляют до целого числа.

Четыре ряда шлифов, внесенных в таблицу 1, получены при использовании значений 2, 4, 6, 8 константы K.

Ряд K_{6} является предпочтительным.

Таблица 1 - Ряды шлифов

В миллиметрах

Наибольший диаметр шлифа	Длина пришлифованной зоны l для рядов									
	K_2	K_4	K_6	K ₈						
5,0	-	9	13	18						
7,0	-	11	16	22						
10,0	-	13	19	25						
12,5	-	14	21	28						
14,5	8*	15	23	30						
18,8	9	17	26	35						
21,5	-	19	28	37						
24,0	10	20	29	39						
29,2	11	22	32	43						
34,5	12	23	35	47						
40,0	13	-	38	-						
45,0	13	-	40	-						

50,0	14	-	42	-
60,0	15*	-	46	-
71,0	-	-	51	-
85,0	18*	-	55	-
100,0	-	-	60	-

^{*} Размеры для шлифов, используемых для потребностей народного хозяйства.

6 Допуски на диаметр и длину

Диаметр и длина пришлифованной зоны должны быть такими, чтобы при наложении ее на плоскость размерной формы, показанной на рисунке 1, верхние и нижние границы пришлифованной поверхности совпадали с участками высоты h_1 и h_2 соответственно; значения d, l, h_1 и h_2 для каждого отдельного соединения берут из таблицы 2. В особых случаях пришлифованная поверхность может превышать эти значения при условии, что длина l всегда входит в эту пришлифованную часть.

Рисунок 1.

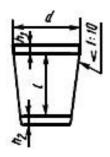


Рисунок 1

Таблица 2 - Размеры и допуски (см. раздел 6 и рисунок 1)

Номи- нальный диаметр шлифа	d	Ряд K_2			Ряд	Ряд <i>К</i> ₄			Ряд <i>К</i> _б			Ряд <i>К</i> ₈		
		<i>l</i> *	h ₁ **	h ₂ **	l*	<i>h</i> ₁	<i>h</i> ₂	l*	<i>h</i> ₁	<i>h</i> ₂	l*	<i>h</i> ₁	<i>h</i> ₂	
5,0	5,1±0,008	-	-	-	8	2	2	12	2	2	17	2,5	2,0	
7,5	7,6±0,008	-	-	-	10	2	2	15	2	2	21	2,5	2,0	
10,0	10,1±0,008	-	-	-	12	2	2	18	2	2	24	2,5	2,0	
12,5	12,6±0,010	-	-	-	13	2	2	20	2	2	27	2,5	2,0	
14,5	14,6±0,010	7***	2,0***	2,0***	14	2	2	22	2	2	29	2,5	2,0	
18,8	18,9±0,015	8	2,5	2,0	16	2	2	25	2	2	34	2,5	2,0	
21,5	21,6±0,015	-	-	-	18	2	2	27	2	2	36	2,5	2,0	
24,0	24,1±0,015	9	2,5	2,0	19	2	2	28	2	2	38	2,5	2,0	
29,2	29,3±0,015	10	2,5	2,0	21	2	2	31	2	2	40	2,5	3,5	
34,5	34,6±0,015	11	2,5	2,0	22	2	2	34	2	2	43	2,5	3,5	
40,0	40,1±0,015	11	2,5	2,5	-	-	-	37	2	2	-	-	-	
45,0	45,1±0,015	11	2,5	2,5		-		39	2	2	-	-	-	

50,0	50,1±0,015	12	2,5	2,5	 -	 - -	 -	41	2	3	 -	 -	 -
60,0	60,1±0,015	12***	2,5***	2,5***	_	-	-	45	2	3	-	-	-
71,0	71,1±0,020	-	-	-	-	-	-	50	2	3] -	-	-
85,0	85,1±0,020	13***	2,5***	2,5***	 -	-	-	54	2	3	-	-	-
100,0	100,0±0,020	-	-	-	-	-	-	59	2	3	-	-	-

^{*} Допуск на l - в пределах $\pm 0,015$ мм.

*** Размеры для калибров, используемых для потребностей народного хозяйства.

Система калибров для определения соответствия шлифов данным пределам приведена в приложении А.

7 Окончательная обработка поверхности

Параметр шероховатости Ra по <u>ГОСТ 2789</u> шлифованной поверхности не должен превышать 1 мкм и предпочтительно должен быть менее 0,5 мкм.

8 Обозначение

^{**} Допуск на h_1 и h_2 - в пределах ±0,010 мм.

Для удобства при ссылках на шлифы, отвечающие требованиям настоящего стандарта на герметичность, рекомендуется пользоваться обозначением, состоящим из следующих размеров, выраженных в миллиметрах:

наибольший диаметр шлифа: 7,5; 12,5; 14,5; 18,8; 21,5; 29,2; 34,5; округляют до 7; 12; 14; 19; 21; 29; 34 соответственно, и

значение пришлифованного участка отделяют наклонной или горизонтальной чертой.

Пример: 19/26 или $\frac{19}{26}$

Пример условного обозначения шлифа конического (КШ) диаметром 18,8 мм и высотой 9 мм для потребностей народного хозяйства:

Шлиф КШ 19/9 ГОСТ 8682-93

ПРИЛОЖЕНИЕ А (рекомендуемое). Система калибров для диаметра и длины конических шлифов

ПРИЛОЖЕНИЕ А (рекомендуемое)

Предлагаемые калибры изготовляют из закаленной стали или другого соответствующего материала. Калибрами для муфт являются конические пробки со ступенькой на каждом конце, а калибрами для кернов служат конические кольца со ступенькой на каждом конце (см. рисунки 2 и 3).

Рисунок 2. Калибры для муфт

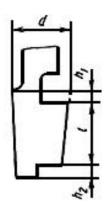
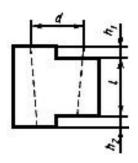



Рисунок 2

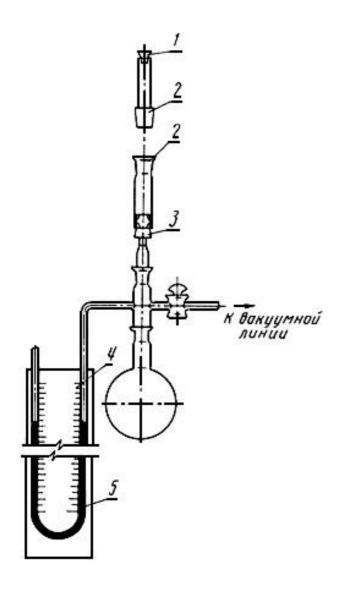
Рисунок 3. Калибры для кернов

Рисунок 3

Конический полуугол каждого калибра равен 2°51'45"±15" (синус соответствующего угла равен 0,04994±0,00007).

Для каждого размера керна или муфты требуется отдельный калибр. Размеры калибров даны в таблице 2 настоящего стандарта. Когда муфта или керн подогнан под соответствующий калибр, они должны находиться в таком положении, чтобы верхние и нижние концы пришлифованного участка полностью лежали в пределах ступенек с высотой h_1 и h_2 соответственно.

В особых случаях пришлифованная поверхность может превышать внешний предел ступеньки на меньшем конце при условии, что она тоже доходит до внутреннего предела ступеньки на большом конце.


ПРИЛОЖЕНИЕ В (обязательное). Испытание на герметичность конических шлифов

ПРИЛОЖЕНИЕ В (обязательное)

Испытание на герметичность проводят на сухих шлифах, наблюдая за скоростью повышения давления в предварительно разреженной системе, связанной с атмосферой через дающее утечку соединение.

Принципиальная схема установки общей емкостью системы приблизительно 1,5 дм³ показана на рисунке 4.

Рисунок 4. Установка для испытания конических шлифов на герметичность

1 - резиновая пробка; 2 - испытуемый шлиф; 3 - резиновая пробка или трубка по размеру испытуемого соединения; 4 - шкала с диапазоном измерения давления приблизительно от 350 до 760 мм рт.ст. (45-100 кПа), с ценой деления 1 мм (0,133 кПа); 5 - ртутная U -образная манометрическая трубка

Рисунок 4

Важно, чтобы все соединения в испытательной установке не давали утечки, и сама установка была проверена перед присоединением к испытуемому соединению. Утечка, обнаруженная во время проверки, должна быть незначительной по сравнению с утечкой, наблюдаемой во время испытания.

Степень чистоты пришлифованной поверхности - важный фактор, влияющий на скорость утечки. Составные элементы сначала протирают тканью, пропитанной соответствующим растворителем, например циклогексаном, затем опускают в этот растворитель и сушат. Частички, прилипшие к поверхности, удаляют щеткой из верблюжьего волоса.

Затем составные элементы помещают по очереди в установку, в разреженную систему, в вертикальном положении.

На соединение влияет только атмосферное давление. При показании ртутного манометра выше 380 мм (50,54 кПа) запорный кран закрывают и через 1 мин снимают показания шкалы. Через 5 мин показания шкалы снимают повторно.

После уравнивания внутреннего и внешнего давлений составной элемент поворачивают по оси на 90° и затем испытание повторяют.

Примечание - При испытании кернов и муфт, отвечающих этим геометрическим требованиям при условиях, указанных выше, увеличение давления в системе в течение 5 мин не превышает 10 мм рт.ст. (1,33 кПа) при

общей емкости 1,5 дм³. При общих емкостях, отличных от 1,5 дм³, соответствующее максимальное повышение давления обратно пропорционально емкости.

Текст документа сверен по:

официальное издание

Посуда и оборудование лабораторные.

Технические условия. Методы испытаний: Сб. ГОСТов. -

М.: ИПК Издательство стандартов, 2003